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Abstract 

A growing literature examines whether and in what context nonexperimental methods can 
successfully replicate the results of rigorous randomized experiments. Ideally, replications focus on 
the “intent-to-treat” (ITT) experimental impact estimate, the most causally rigorous measure. Some 
previous studies have been able to replicate an ITT experimental impact estimate by identifying a 
nonexperimental comparison group that closely resembles the experimental control group. But field 
experiments often experience control-group crossover, in which some control-group subjects 
ultimately receive treatment. If the intervention has an impact, control-group crossover will cause a 
nonexperimental impact estimate to differ from an experimental ITT estimate even if the 
nonexperimental method produces a valid estimate of the impact of participating in treatment. This 
paper develops a new replication approach that allows nonexperimental methods to be tested against 
rigorous experimental ITT impact estimates when the experiment includes substantial control 
crossover. We apply this new method of replicating ITT impact estimates in measuring the effects of 
charter schools on student achievement, testing three nonexperimental approaches that incorporate 
pre-treatment baseline measures of the outcome of interest. Using the new replication approach, all 
three methods produce results that are nearly identical to ITT experimental impact estimates.  

 
Acknowledgements. The authors thank Philip Gleason for helpful advice and constructive 
feedback. 
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A growing literature examines whether and in what context nonexperimental methods can 
successfully replicate the results of randomized experiments (Fortson et al. 2012; Glazerman et al. 
2003; Cook et al. 2008). A valid replication exercise requires that the experimental method and the 
nonexperimental method are measuring the same thing, i.e., that they do not differ in terms of the 
causal mechanism or the subject population (Cook et al. 2008). Ideally, replications focus on the 
intent-to-treat (ITT) experimental impact estimate, because it is the most causally rigorous measure. 
In some cases, replicating an ITT experimental impact estimate involves nothing more than 
replicating the experimental control group by identifying a nonexperimental comparison group that 
closely resembles it on observable characteristics. 

In real-world field experiments, however, study subjects who are randomly assigned to the 
control group do not always comply with their assignments—some subjects assigned to the control 
condition ultimately receive treatment. Control-group crossover to treatment is common, for 
example, in studies that use school admissions lotteries to evaluate the impacts of oversubscribed 
schools: Some lottery losers subsequently find another way to be admitted to the school. Crossover 
(noncompliance with random assignment) by control-group members undermines the conventional 
approach to replication because a nonexperimental method necessarily excludes from its comparison 
group subjects who are receiving treatment. In other words, there is no way for the nonexperimental 
approach to identify a comparison group that fully resembles the experimental control group, 
because there is no way for the nonexperimental comparison group to include subjects receiving 
treatment.  

If the intervention has a true impact (positive or negative), the mismatch between experimental 
control group and nonexperimental comparison group that results from control crossover will cause 
the experimental and nonexperimental impact estimates to differ even if the nonexperimental 
method is capable of producing a valid estimate of the impact of participating in treatment (i.e., the 
effect of treatment on the treated, or TOT). The conventional replication approach cannot succeed 
if there is substantial control crossover and a non-zero treatment effect. 

When examining policy impacts, replication exercises are particularly important, because many 
policy-relevant questions cannot readily be addressed with randomized experiments. 
Nonexperimental methods remain essential tools in policy research and evaluation—and they need 
to be tested against the most rigorous, gold standard, randomized experimental methods to provide 
confidence in their validity and rigor. Given the importance of validating nonexperimental methods, 
there is a clear need for a replication approach that can be used in field experiments that involve 
control crossover. This paper develops a new approach that allows nonexperimental methods to be 
tested against rigorous experimental ITT impact estimates even when the experiment includes 
substantial control crossover. 

We apply this new method to examine whether three nonexperimental approaches—all 
incorporating pre-treatment baseline measures of the outcome of interest—can replicate ITT impact 
estimates of charter schools on student achievement when there are high rates of control crossover. 
Using the new replication approach, all three methods produce results that are nearly identical to 
ITT experimental impact estimates. 

The next section explains why the ITT impact estimate from a randomized experiment (rather 
than a TOT impact estimate) is the appropriate standard to be used in a replication exercise, 
particularly when control crossover exists. In the subsequent section, we derive the nonexperimental 
equivalent of an experimental ITT estimate when some control students attend charter schools. The 
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following sections describe the data and the estimation methods and present results. Finally, we 
discuss the implications of the findings, both for future replication exercises and for the use of 
nonexperimental methods when experimental data are unavailable. 

Why Replicate ITT? 

For purposes of causal inference, randomized experimental designs are clearly superior to 
alternative designs. Properly designed and implemented experiments—often difficult and expensive, 
and thus uncommon—produce impact estimates that support stronger causal conclusions, by 
creating treatment and control groups that are equivalent in expectation on observed and 
unobserved characteristics prior to receiving an intervention (Shadish et al. 2002; Murnane and 
Willet 2011). Any statistically significant difference between group outcomes can be attributed to the 
impact of the intervention.  

In field experiments, noncompliance with random assignment is common. Some subjects 
randomly placed in the treatment group may decline treatment, while other subjects randomly placed 
in the control group may find alternate ways to receive treatment. Noncompliance routinely occurs, 
for example, in studies that rely on randomized admissions lotteries of oversubscribed schools to 
implement an experimental research design in measuring the impacts of the schools. Charter 
schools, in particular, often select students by lottery if they have more applicants than available 
spaces. Various studies have taken advantage of data from admissions lotteries to estimate school 
impacts (e.g., Hoxby et al. 2009; Gleason et al. 2010; Abdulkadiroglu et al. 2011; Angrist et al. 2011; 
Dobbie and Fryer 2011a; Dobbie and Fryer 2011b; Bifulco 2012; Tuttle et al. 2013).  

When crossover occurs, rigorous ITT impact estimates will understate the intervention’s TOT 
impact, which is often of greater interest to policymakers and other stakeholders. To estimate the 
TOT impact of receiving treatment, researchers typically use the random assignment as an 
instrument in a two-stage, least-squares analysis (Angrist et al. 1996). This provides an estimate of 
the TOT effect of program participation on students who comply with their random assignment.1  

In the presence of crossover, researchers seeking to validate nonexperimental methods 
sometimes attempt to replicate the TOT impact estimate based on the two-stage instrumental 
variable (IV) approach (e.g., Abdulkadiroglu et al. 2011; McKenzie et al. 2007, as cited in Cook et al. 
2008). This approach eliminates the control crossover problem, because the crossover subjects are 
not included in the IV-based TOT impact estimate.  

                                                 
1 In charter-school studies, researchers sometimes can minimize crossover from assignment to control by carefully 

monitoring admissions offers from the waitlist, so that any student offered admission prior to the start of school—
including students who were not offered admission at the time the lottery was conducted—is defined as a treatment 
student (Gleason et al. 2010; Abdulkadiroglu et al. 2011). Even when this is done, control crossover still occurs. In 
Gleason et al. (2010), about 6 percent of control students attended the study charter schools during the first follow-up 
year (see also Abdulkadiroglu et al. 2011; Dobbie and Fryer 2011b). These students might have been admitted through 
an administrative error, favoritism, or an admission offer after the beginning of the school year. This definitional 
minimization of control crossover often cannot be used for two reasons. First, schools with oversubscribed lotteries 
often ultimately offer admission to all students not admitted at the time of the lottery, meaning there are no randomized 
students who never received an offer (that is, no control students). Second, some schools do not have good records on 
whether the randomization order was followed when admitting students from the waitlist, after the lottery. 
Consequently, some studies (Abdulkadiroglu et al. 2011; Furgeson et al. 2012) define treatment as receiving an offer at 
the time of the lottery; students admitted off the waitlist to replace those admitted students who do not enroll become 
control crossover. These studies have high rates of control crossover, approaching 50 percent (Furgeson et al. 2012). 
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Replicating IV-based TOT impact estimates is an imperfect solution to the crossover 
replication challenge. The two-stage, IV-based analysis is less causally rigorous than the experimental 
ITT analysis. In particular, the validity of the IV-based TOT impact estimate depends on the 
“exclusion restriction.” When control crossover exists, the exclusion restriction requires that 
control-group subjects who cross over to treatment must have the same average outcomes as 
treatment-group subjects who would have received treatment regardless of whether they had been 
assigned to treatment. In other words, always-takers should have the same average outcomes 
regardless of treatment assignment, because treatment assignment, independent of enrollment, 
should not affect outcomes. 

The charter-school context provides illustrations of why the exclusion restriction might fail, 
invalidating IV-based TOT impact estimates. One threat to the exclusion restriction in the charter 
school context is that treatment always-takers might receive a different treatment than control 
always-takers, leading to different average outcomes. Because crossover students often receive 
admission offers later than treatment students, it is possible that their enrollment in the charter 
school begins after the start of the school year and that they experience a different treatment and 
consequently different outcomes than lottery winners. Data from one study (Gleason et al. 2010) 
indicates that some control-group crossover students received their admission offers after the school 
year started, sometimes as late as February.2 Over the course of multiple years, fractional treatment 
becomes a more prominent issue that affects the treatment group as well as control crossovers; IV-
based TOT analyses (e.g., Abdulkadiroglu et al. 2011) deal with this by measuring the treatment 
effect per year of treatment, even though treatment students are more likely to experience treatment 
early in the study period while control crossovers are more likely to experience treatment later in the 
study period (as a result of being admitted in a later grade). Charter schools may have different 
effects in early grades than later grades, but the IV-based TOT approach assumes equivalence. 
Finally, many studies now have multiple treatment charter schools with participants in several 
lotteries, and in these studies, treatment always-takers might attend different schools than control 
always-takers. 

There is a second reason that an IV-based TOT estimate is not ideal as a standard to replicate, 
even if the estimate is unbiased—the impact estimates produced by IV-based TOT and 
nonexperimental approaches involve different groups of treatment subjects. The two-stage IV 
approach estimates impacts only for a specific subset of subjects, known as compliers: those who 
receive treatment only if they are randomly assigned to treatment. The approach estimates complier 
average causal effects (CACE). Not all subjects in treatment are compliers, since some would have 
enrolled in treatment even if they were not assigned to treatment (always-takers). Standard 
nonexperimental approaches cannot distinguish between compliers in treatment and always-takers in 
treatment; they estimate the impacts on all subjects who are receiving treatment. In short, when 
crossover occurs, an attempt to replicate IV-based TOT impacts violates one of the basic principles 
of replication—that the two methods should be measuring the same thing for the same subjects. 

Replicating Experimental ITT Using NXP 

This section describes how we use nonexperimental methods to estimate an impact that should 
be comparable to the gold-standard experimental ITT impact for the same subjects, as illustrated 
using charter schools and their admissions lotteries. 

                                                 
2 Unfortunately, we cannot determine how often this occurred in our data. 
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In basic form, an experimental ITT estimate is simply the average outcome for treatment 
subjects minus the average outcome for control subjects. In the absence of crossover, replicating 
experimental impact estimates is therefore equivalent to identifying a group of subjects that proxies 
for the experimental control group (given that the treatment group is defined to be the same in 
experimental and nonexperimental analyses). When some control-group subjects cross over to enroll 
in treatment, however, replication is more complicated. It is impossible for a nonexperimental 
approach to replicate the part of the experimental control group that crosses over, because the 
nonexperimental approach finds comparison subjects only among the population that did not enroll 
in treatment schools. Nonetheless, a nonexperimental approach can attempt to replicate the 
experimental ITT estimate by splitting the estimate into components corresponding to the different 
groups of subjects who actually receive treatment. (Note that we can identify which subjects are 
always-takers in the control group—they are the ones in treatment—but not in the treatment group, 
because participating subjects are a mix of always-takers and compliers who cannot be 
distinguished.) Below we derive the nonexperimental equation to be used to match experimental 

ITT impact estimates. We use the same notation from Equation 1, plus an additional term: ���= 

proportion of experimental group k that received treatment, where � ∈ ��, 	
. Note that ��� =
�
 + ���and ��� = �
. 

Not all of the µ parameters can be estimated. In fact, only ��� and ��
 are observable. However, 
we can always estimate the p parameters because the percentage of always-takers, compliers, and 
never-takers in each treatment group is the same due to randomization, and pA and pN are observed 
(pA is the proportion of control cross-overs, and pN is the proportion of treatment subjects who do 
not enroll), enabling the calculation of pC. 

 The experimental ITT estimate can be expressed as follows. 
 

(2) ������ = ��
��
 + ������� + ������ − ��
��
 + ������� + ������ 
																					= 	 �
���
 − ��
� + �������� − ����� + ������ − ����  
 

The next step in the derivation requires us to assume that the exclusion restriction—that is, 
assignment affects outcomes only through attendance—holds for the subset of the analysis group 
who are never-takers (i.e., who would not participate in treatment regardless of whether they are 
randomly assigned to treatment or control). We earlier expressed doubts about the validity of the 
exclusion restriction when used for purposes of converting an ITT impact estimate to a TOT 
estimate in the context of crossover, but the reasons for doubting the exclusion restriction in that 
context are related to the group of always-takers, not the never-takers. Even if the exclusion 
restriction fails with respect to always-takers (because among the always-takers, lottery winners may 
experience different treatment than lottery losers), it is reasonable to assume that the restriction 
holds with respect to never-takers: Never-takers do not experience treatment of any kind, so the 
assumption that they are unaffected regardless of treatment assignment is plausible.  

If never-takers are unaffected by treatment assignment, then ��� − ��� = 0, so 

(2’) ������ = �
���
 − ��
� + �������� − �����. 
 

In the nonexperimental approach, every treatment participant from the experimental treatment 
group is matched with an observationally similar subject who is not receiving treatment. Treated 
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subjects from the experimental treatment group have the following mean outcome, which we denote 

by ��� : 

 

(3) ��� = ��
������ ��


 + ���
������ ��

��, 

 

which is a weighted average of the always-taker mean and the complier mean in the experimental 
treatment group, with weights equal to their proportional representation among treatment enrollees 

in the experimental treatment group.	��� is observed, but ��
 and ���� are not observed because 
always-takers and compliers cannot be distinguished. 

Consider the matched comparison sample in the nonexperimental analysis. Let µD denote the 
mean outcome in the matched comparison sample, with the subscript “D” connoting that the 
students in this sample come from traditional district schools and thus are not receiving treatment.  

The nonexperimental TOT impact, in terms of the above notation, is: 

(4) ������ = ��� − � = ! ��
������ ��


 + ���
������ ��

��" − � . 

 
The matched comparison sample consists of: (1) untreated subjects (in the current study, these 

are students enrolled in local district schools) who are matched to treatment group always-takers, 
and (2) untreated subjects who are matched to treatment group compliers. Because we cannot 
distinguish always-takers and compliers in the treatment group, we also cannot distinguish the two 
subgroups of the matched comparison sample. Nevertheless, µD can be expressed as a weighted 
average of the unobservable mean outcomes of the two aforementioned subgroups: 

(5) � = ! ��
������ � 

#
 + ���
������ � 

#��", 
 

where � #
 is the mean outcome for untreated subjects (district students) matched to treatment 

group always-takers, and � #�� is the mean outcome for untreated subjects matched to treatment 
group compliers. Substituting (5) into (4) and rearranging terms gives: 

(6) ������ = ��
������ ���


 − � #
� + ���
������ ���

�� − � #���.  
 

The first bracketed expression in equation (6) for the nonexperimental estimate is, in general, 
not the same as the first bracketed expression in equation (2’) for the experimental ITT estimate. If 

treatment has an impact, then � #
 ≠ ��
 because the outcome of the treated subjects (here, charter 
enrollees) in the experimental control group will reflect that impact, but the matched comparison 
subjects’ outcome will not. 

However, if the untreated subjects who are matched to treatment group compliers are a perfect 
proxy for the experimental control group compliers (which is plausible because neither group 

receives treatment), then	� #�� = ����, which means: 
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(6’) ������ = ��
������ ���


 − � #
� + ���
������ ���

�� − �����.   

 
Because our objective is to transform the nonexperimental estimate to be as analogous as 

possible to the experimental ITT in equation (2’), we multiply (4’) by (pA+pCP) to eliminate the 

denominators on the right-hand side of equation (6’). Moreover, as noted, ��� = �
 + ���. 
Therefore, 

 

(7) ��� × ������ = �
���
 − � #
� + �������� − �����.  
 

Equation (7) is very close to the experimental ITT expression in equation (2’). The only 

difference is that equation (7) has ���
 − � #
� instead of ���
 − ��
�. As noted, this is a substantial 

difference because the mean outcome of always-takers in the experimental control group, ��
, 
reflects the contribution of treatment, while the mean outcome of untreated subjects (enrolled in 

district schools) who are matched to treatment group always-takers, � #
, does not reflect any 
contribution of treatment since these students did not receive treatment (did not enroll in charter 
schools). 

To resolve this discrepancy, we conduct another matching exercise in which treated subjects in 
the experimental control group (that is, the control group always-takers) are matched with untreated 
subjects who are similar on observed characteristics. Let TOTEC denote the difference in outcomes 
between treated always-takers in the experimental control group and their matched counterparts 
who are not in treatment. We assume that the comparison subjects who are matched to treated 
subjects in the experimental control group have the same mean outcome as comparison subjects who 
are matched to always-takers in the experimental treatment group. This assumption is reasonable 
because both groups of untreated comparison subjects are being matched to always-takers from the 
lottery, and randomization means the always-takers should be equivalent at baseline. Under this 
assumption: 

(8) ����� = ��
 − � #
 leads to: 
 

(9) ��� × ����� = ������
 − � #
� = �
���
 − � #
�.  
 

Finally, subtracting equation (7) from equation (5) gives: 

(10)  ��� × ������ − ��� × ����� = �
���
 − � #
� + �������� − ����� − �
���
 − � #
� 
       = �
���
 − ��
�+�������� − ����� 
 =ITTEXP. 
 

Therefore, ��� × ������ − ��� × �����should be similar to the experimental ITT impacts. 
Note that the better the matches created by the nonexperimental matching process, the more likely 
the equality in equation 10. 

This equation has the virtue of allowing the effects of treatment on the control crossover 
subjects to differ from the effects on subjects randomized to treatment (in this study, lottery winners 
who attend charter schools). To replicate experimental ITT results nonexperimentally, we subtract 
the estimated nonexperimental effects on the crossover subjects (scaled by the proportion of all 
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control subjects who are crossovers) from the effects on the treatment subjects who receive 
treatment (scaled by the proportion of all of the randomized treatment subjects who receive 
treatment).  

Data 

Description 

We use student-level administrative data provided by state departments of education, school 
districts, and charter-school management organizations (CMOs). The data were collected for a study 
of charter schools operated by charter management organizations (CMOs) (Furgeson et al. 2012). 
CMOs aim to improve charter performance by leveraging well-regarded charter school models, and 
create and operate multiple charter schools under a common structure and philosophy. The sample 
includes data from four jurisdictions. The treatment schools were 12 oversubscribed middle and 
high schools across seven CMOs in the 2006–2007, 2007–2008, or 2009–2010 academic years. 
Three of the schools had oversubscribed lotteries in multiple years. 

We focus on two outcomes: reading (labeled English language arts in some states) and math 
scores on state achievement tests one year after students enrolled in school following participation in 
a lottery (year 1). Where statewide statistics are available, we standardize test scores using state-level 
means and standard deviations for each grade and cohort. Otherwise, we use district-level means 
and standard deviations for test score standardization.  

Student characteristics available for the experimental and nonexperimental analyses are: baseline 
reading and math test scores (including missing test score indicators), sex, race/ethnicity (African 
American, Hispanic, white/other), baseline free- or reduced-price lunch (FRPL) eligibility status, 
English language learner (ELL) status, special education status (IEP), and an indicator of whether a 
student attended a charter school in the baseline year.3   

Diversity of Sample 

The six CMOs included in the sample are quite diverse. The sample CMOs have schools in 
three of the four U.S. Census regions: Northeast, South, and West. Table 1 provides baseline (pre-
enrollment) student characteristics for the CMOs. Prior to enrolling in the sample CMO middle 
schools, standardized student test scores were as low as –0.08 and –0.11 in reading and math, 
respectively, and as high as .63 and .53 (where zero is the average test score in the locality), 
respectively. Special education rates for the CMOs (measured in the year prior to enrollment) range 
from 5 percent to 14 percent of their enrolled students. The percentage of students who were 
English language learners varies from 4 percent to 33 percent. Finally, the CMOs are diverse in 
terms of race/ethnicity: the percentage of African American students ranges from 11 percent to 81 
percent, and the percentage of Hispanic students ranges from 17 percent to 75 percent. 

  

                                                 
3 One district did not have reliable information on students’ free- or reduced-price lunch status. One district did 

not include information on students’ ELL status. 
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Table 1. Baseline Statistics for Treatment Charter Schools 

CMO 
Reading 
Score 

Math 
Score 

Percentage 
African American Percentage Latino 

1 -0.08 -0.11 Medium Medium 

2 -0.07 0.04 Low High 

3 -0.07 0.16 Low High 

4 0.02 -0.04 Medium Low 

5 0.05 -0.03 High Low 

6 0.63 0.53 Low Low 

Notes: CMOs are ordered first by reading score (lowest to highest) and then math score. If the percentage 
of African American or Latino students is between 0 and 33 percent, the CMO is labeled low. CMOs with 
percentages between 34 and 67 percent are labeled medium, and CMOs with percentages greater than 67 
percent are labeled high. Exact percentages of African American and Latino students are not reported to 
avoid identifying CMOs.   

Experimental Method 

Sample and Baseline Equivalence 

The experimental sample frame consists of students who applied to an oversubscribed charter 
(CMO) school that used a random lottery to admit students. The treatment group is composed of 
applicants offered admission to a participating CMO school at the time of the lottery.4 Applicants not 
offered admission at the time of the lottery form the control group. All students who provided 
consent (obtained prior to the lottery), were in the correct application grade at the time of the 
lottery, were randomized in the lottery, and had baseline test scores are included in the analysis. A 
student who applied to more than one of the sample schools could receive an offer to one of the 
schools even if the student was among the lottery losers at the other school(s). In these cases, we 
treat all schools sharing applicants as a single site. 

To ensure the validity and power of the impact estimates, included sites meet each of the 
following criteria: 

1. The overall and differential attrition rates are lower than the maximum thresholds 
defined by the U.S. Department of Education’s What Works Clearinghouse (liberal 
attrition standard, Handbook version 2.1); 

2. If we did not observe the lottery and consequently were unsure of the randomization 
validity, any difference between treatment and control average baseline test scores is less 
than 0.25 effect size, and demographic differences are less than 25 percentage points;5  

                                                 
4 The enrollment rates of students admitted at the time of the lottery are substantially higher than those of students 

rejected at the time of the lottery, meaning that this measure provides enough random assignment so that we might 
plausibly expect to observe an impact. Angrist et al. (2013) used a similar approach. An approach in which assignment is 
based on whether students were ever admitted to a CMO school was not possible for two reasons. First, many schools 
with oversubscribed lotteries ultimately admitted all students who were not admitted at the time of the lottery, meaning 
there were no randomized students who never received an offer (that is, no control students). Second, many schools did 
not follow the randomization order when admitting students after the lottery. 

5 The effect size measure was Hedge’s g. Relatively large baseline differences were allowed because some of the 
sites were small and could have moderate baseline differences even if the randomization was valid.  
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3. The difference between treatment and control groups in enrollment rates in the 
treatment schools is at least 20 percentage points (ensuring that the lottery assignment 
predicts treatment well enough that it would be plausible to observe an impact). 

Application of these criteria left 579 treatment and 809 control students with baseline data who 
were eligible for the reading analysis, and 331 treatment and 574 control students with baseline data 
who were eligible for the math analysis. In the reading impact analysis, we excluded 52 treatment 
and 74 control students because we were unable to obtain outcome data or they were in the wrong 
grade in the outcome year,6 leaving a final analysis sample size of 527 treatment and 735 control 
students. In the math analysis, we excluded 13 treatment and 26 control students for the same 
reasons, leaving a final analysis sample size of 318 treatment and 548 control students. Overall 
attrition in the reading sample was 9 percent, with no differential attrition between the treatment and 
control conditions. Overall attrition in the math sample was 4 percent, with a 1 percentage point 
difference between attrition in the treatment and control conditions. The low attrition levels in this 
study are unlikely to significantly bias impact estimates, according to the What Works Clearinghouse 
attrition standards (What Works Clearinghouse 2011).  

Consistent with minimal bias, baseline statistics of observable characteristics indicate that the 
final treatment and control groups are very similar for both reading and math impact analyses, with 
no statistically significant differences (all p-values>.10). Table 2 presents baseline statistics for 
students included in the math and reading analysis samples.  

  

                                                 
6 These students without outcome test scores most likely attended a private school or an independent charter 

school that did not provide data to their district. The students in the wrong grade in the outcome year either repeated or 
skipped a grade in the outcome year. 
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Table 2. Baseline Statistics for Treatment and Control Groups 

Characteristic T Mean C Mean Diff (T-C) p-value 

Reading Analysis (n= 527 T and 735 C) 

Baseline Reading Score 0.11 0.07 0.04 0.497 

Baseline Math Score 0.08 0.02 0.06 0.328 

Prebaseline Reading  0.16 0.08 0.08 0.183 

Prebaseline Math  0.13 0.12 0.01 0.949 

% Male 0.51 0.50 0.01 0.653 

% Black 0.43 0.43 0.00 0.926 

% Hispanic 0.49 0.51 -0.02 0.648 

% White/Other 0.07 0.06 0.01 0.425 

Baseline % FRPL 0.76 0.75 0.01 0.850 

Baseline % LEP 0.09 0.10 -0.01 0.859 

Baseline % IEP 0.06 0.08 -0.02 0.313 

Baseline % Charter Attendance 0.09 0.11 -0.02 0.465 

Math Analysis (n= 318 T and 548 C) 

Baseline Reading Score 0.12 0.09 0.03 0.696 

Baseline Math Score 0.08 0.02 0.06 0.313 

Prebaseline Reading  0.14 0.09 0.05 0.454 

Prebaseline Math  0.10 0.08 0.02 0.817 

% Male 0.53 0.47 0.06 0.128 

% Black 0.61 0.62 -0.01 0.857 

% Hispanic 0.37 0.36 0.01 0.823 

% White/Other 0.02 0.02 0.00 0.883 

Baseline % FRPL 0.83 0.82 0.01 0.907 

Baseline % LEP 0.06 0.05 0.01 0.542 

Baseline % IEP 0.06 0.08 -0.02 0.437 

Baseline % Charter Attendance 0.04 0.02 0.02 0.208 

Notes: These tables include only students who were included in the reading and math analyses. 
Students with missing reading outcome data are excluded from the reading analysis sample; 
likewise, students with missing math outcome data are excluded from the math analysis 
sample. Some students have missing baseline and pre-baseline test scores; these scores are 
imputed in the analysis, but imputed values are not included in this table. Reading and math 
test scores are standardized using the state district mean and standard deviation. All statistics 
are weighted to account for admission probabilities. 

 
 

Experimental ITT Estimation and Weights 

To estimate an experimental ITT impact, we compare outcomes of applicants offered 
admission at the time of the lottery to those of applicants rejected at the time of the lottery, 
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controlling for students’ previous test scores and demographic characteristics.7 The impact 
estimation model is: 

 (11)  y'( =∝ +X'β + δT' + S(θ + 0T' × S(1φ + ϵ'(,  
 
where yij is the reading or math test score outcome for student i in site j; α is the intercept; Xi is a 
vector of student achievement and demographic characteristics (see Table 2); Ti is a binary variable 
for treatment status, indicating whether student i was admitted at the admission lottery; Sj is a vector 
of indicators identifying the site j that the student applied to (i.e., site—all schools sharing 
applicants—fixed effects); ε is a random error term that reflects the influence of unobserved factors 

on the outcome; and β, δ, θ, and φ	are vectors of parameters or parameters to be estimated. Each 
site is defined by a common city, lottery year, and grade level, and thus the fixed effects control for 
these factors, and also allow student achievement scores within site to be correlated. The estimated 

coefficient on treatment status, δ, and the interactions between site and treatment status, φ, 
represents the impact of admission to a CMO school at the time of the lottery.8 Students are 
weighted to account for admission probabilities (see Furgeson et al. 2012 for details). 

When students are missing baseline or pre-baseline test scores, we include a missing data 
indicator in the model and set each missing test score to the state or district-level mean, which is 
zero by design. For students missing demographic variables (race/ethnicity, gender, FRPL, LEP, 
IEP, baseline charter status), we recode the missing values for these covariates to the mode across all 
students in the sample (not an English language learner, no IEP, not attending a charter school at 
baseline, receiving free/reduced-price lunch, female, and Hispanic). In some cases, missing data 
indicators could not be included because they were perfectly collinear. We do not impute outcome 
test scores, and students who are missing either a math or reading test score in the follow-up year 
are excluded from the analysis when that test score is the outcome variable. 

 

Nonexperimental Methods 

Following the derivation discussed earlier, in order to replicate the experimental ITT impact 
estimate, we require two sets of nonexperimental impact estimates: the impact of charter school 
enrollment on treatment group enrollees and the impact of charter school enrollment on control 
group enrollees (crossovers). The treatment group enrollees are lottery winners who attended an 
experimental charter school. The control-group enrollees are lottery losers who attended an 
experimental charter school. For both groups of enrollees, comparison groups are identified among 
students who did not attend an experimental charter school. 

                                                 
7 As student admission to CMO schools was randomly determined, we could simply compare the mean outcomes 

of the treatment and control groups. However, to obtain more precise impact estimates, we adjust for baseline student 
characteristics in a regression model. 

8 The overall impact is estimated by ∑ 5678ℎ:; × < + =>;;
? , where weight indicates the weight for site j based on 

the number of students in the site and their admission probabilities (see Furgeson et al. 2012 for details). It’s possible to 

estimate an overall impact without the interaction terms (that is, y'( =∝ +X'β + δT' + S(θ + ϵ'(). We prefer to use the 

model with the interaction terms to estimate overall impacts to be consistent with the NXP approach that must use site-
specific impact estimates. (Because the NXP estimates subtract the control enrollee impacts from the treatment enrollee 
impacts, impacts must be estimated individually for each site and then aggregated.) Although the no-interactions model 
has identical point estimates to the ones we estimate using Equation 10, it has more precision. As a sensitivity check, we 
estimated overall impacts using both models; the conclusions from hypothesis tests were unchanged. 
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There is reason for optimism about the validity of nonexperimental methods in studies of 
educational interventions for which test scores are the outcomes of interest. Such studies can often 
utilize pre-intervention test measures and include comparison students from the same community 
(Cook et al. 2008). Because pre-treatment test scores are highly correlated with post-treatment test 
scores, including these measures as covariates and/or matching variables might enable 
nonexperimental approaches to sufficiently account for selection into charter schools. Moreover, 
selecting comparison students from the same community makes the groups more similar on 
unobserved characteristics associated with geography. Indeed, three recent studies (Bifulco 2012; 
Fortson et al. 2012; Tuttle et al. 2013) that compared experimental ITT estimates to 
nonexperimental estimates using pre-intervention measures found results that suggest cautious 
optimism about the performance of nonexperimental approaches—but none of those studies 
included substantial control crossover.  

We estimate impacts using an OLS regression model; covariates are included to improve 
statistical precision and to control for any remaining differences in baseline characteristics. (For the 
two matching approaches described below, this follows the creation of matched samples.) The 
regression model is identical to the model used in ITT experimental analysis (Equation 11). For the 
nonexperimental approaches, however, the treatment indicator, T, corresponds to each of the two 
enrollee groups. In estimating impacts, enrolled students are weighted to account for the probability 
of winning a lottery admission offer (replicating the experimental impact estimation). The matched 
comparison students are assigned the analysis weight for the enrolled students to whom they are 
matched. The experimental admission probability weights are rescaled so that a given site has the 
same weight in both the experimental and the nonexperimental approaches. This weighting ensures 
that any potential differences between experimental and nonexperimental estimated impacts can be 
attributed to the approaches themselves rather than differences in weights. To calculate an overall 
impact estimate, the site-specific estimates were aggregated using Equation 12. 

 (12) ∑ weight((
? F0�;� × ���;�1 − 0�;� × ���;�1G, 

 

where weight indicates the weight for site j based on the number of students in the site and their 
admission probabilities (same for both experimental and nonexperimental), p indicates the 
percentage of treatment or control enrollment at site j, and TOT indicates the estimated impact for 
treatment or control enrollees at site j.   

Propensity Score Matching 

The first step in the propensity-score matching (PSM) approach is to estimate a propensity 
score for each student in the sample. To determine the appropriate propensity score model for each 
of the two enrollee groups, we use a forward model selection procedure for the logistic regression. 
Because baseline math and reading test scores are some of the strongest predictors of later 
outcomes, we specify that the model-building procedure begins with the model containing the two 
baseline test scores and corresponding missing test score indicators. At each subsequent step, the 
forward procedure adds a term from a specified set of potential covariates to optimize model fit to 
the data. The procedure can select from a list of 52 potential covariates: the 11 observed baseline 
covariates, 39 two-way interactions of these covariates, and 2 interactions of test scores with 
themselves (i.e., quadratic terms). These models fit the data well, as indicated by the Hosmer and 
Lemeshow Goodness-of-Fit test p-values (0.45 for treatment enrollees and 0.78 for control 
enrollees). 
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After estimating the propensity scores, we identify comparison students whose estimated 
propensity scores are similar to those of each treatment student (that is, comparison students who 
had similar probabilities of enrolling in CMO schools). The selection uses caliper matching, whereby 
a given treatment student is matched to all comparison students with estimated propensity scores 
within a specified range (or caliper), rather than merely selecting a specified number of nearest 
neighbors. The sampling occurs with replacement. The matching procedure is implemented 
separately for each jurisdiction. To improve statistical precision, we select multiple comparison 
students for each treatment student.  

For math outcome samples, the matched comparison students on average have similar baseline 
(pre-treatment) math and reading test scores as the treatment students (Table 3). They also have 
similar distributions on all demographic covariates, with the exceptions of race/ethnicity and 
baseline charter school attendance.9 The results were similar for reading outcome samples (not 
shown). 

Table 3. Baseline Statistics for Treatment-Group Enrollees and Propensity-Score Matched Comparison 
Group (Math Outcome) 

Prior Student Achievement 
or Student Characteristic 

Treatment (n= 200) 
Mean/Percentage 

Comparison (n= 5,905) 
Mean/Percentage Difference  

Baseline Math Score 0.10 0.07 0.02 

Baseline Reading Score 0.10 0.06 0.04 

Race/Ethnicity    

African American 0.58 0.30 0.28** 
Hispanic 0.40 0.48 -0.08** 
White/Other 0.02 0.22 -0.20** 

Male 0.60 0.59 0.01 

Free/Reduced-Price Lunch 0.84 0.87 -0.03 

Special Education 0.05 0.05 0.00 

English Language Learner 0.06 0.11 -0.05* 

Attended Charter School at 
Baseline 0.05 0.02 0.03** 

    *Significantly different from zero at the .10 level, two-tailed test 
  **Significantly different from zero at the .05 level, two-tailed test 

 
 

  

                                                 
9 There are only a few students who were not African American or Hispanic in the treatment group. While the 

race/ethnicity variable was selected by the model selection procedure, the associated coefficients had large standard 
errors. As a result, race/ethnicity were excluded from the propensity-score matching model, resulting in an imbalance 
between treatment and matched comparison students. However, race/ethnicity is a covariate in the impact estimation 
model. In addition, the PSM estimates are almost identical to those from the exact matching approach, which includes 
race/ethnicity as a matching characteristic. This suggests that our approach is robust to the exclusion of this variable 
from the propensity model. Similar problems occurred with baseline charter school attendance. 
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Table 4. Baseline Statistics for Control-Group Enrollees and Propensity-Score Matched Comparison 
Group (Math Outcome) 

Prior Student Achievement 
or Student Characteristic 

Treatment (n= 124) 
Mean/Percentage 

Comparison (n=3,695) 
Mean/Percentage Difference  

Baseline Math Score -0.01 0.03 -0.03 

Baseline Reading Score 0.05 0.08 -0.03 

Race/Ethnicity    

African American 0.56 0.32 0.25** 
Hispanic 0.42 0.46 -0.04** 
White/Other 0.02 0.22 -0.20** 

Male 0.40 0.40 0.00 

Free/Reduced-Price Lunch 0.89 0.84 0.05 

Special Education 0.08 0.10 -0.02 

English Language Learner 0.02 0.02 0.00 

Attended Charter School at 
Baseline 0.01 0.02 -0.01 

    *Significantly different from zero at the .10 level 
  **Significantly different from zero at the .05 level 
 

Exact Matching 

Exact matching (EM) uses comparison group students who exactly match treatment students 
on a set of demographic characteristics and have very similar baseline test scores (e.g., see 
Woodworth and Raymond 2009). To be selected, the comparison students must exactly match the 
treatment students on the following categorical characteristics: baseline charter school attendance, 
sex, race/ethnicity, FRPL eligibility status, LEP status, IEP status, grade in outcome year, cohort, 
and jurisdiction. Exact matching on continuous characteristics—such as baseline math and reading 
test scores—would rarely identify matches, so we define a comparison student to be an exact match 
if his or her test score falls within 0.10 standard deviation of the treatment student’s baseline test 
score in the same subject. We managed to find matches for 95 and 97 percent of the treatment 
students for the math and reading analysis samples, respectively. Following the creation of the 
matched comparison group, impacts are estimated using the same regression model used in the 
experimental and PSM analyses. 

OLS Regression with Baseline Achievement Covariates 

The OLS-only approach does not attempt to create a matched comparison group of students. 
Instead, the approach uses the entire population of non-CMO students in the local jurisdiction as 
comparisons, relying entirely on covariates to adjust for baseline differences between treatment 
students and other students. We use the same OLS regression model used to estimate impacts in all 
of the other approaches. 

Results 

The nonexperimental approaches successfully replicate average experimental ITT impact 
estimates for the 12 charter schools in the replication sample (Table 5). Propensity-score matching 
produces ITT impact estimates within 0.01 of the experimental ITT estimate in math and 0.03 of the 
experimental ITT estimate in reading. Neither of the differences is statistically significant, and they 
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differ in opposite directions (i.e., they do not consistently under- or over-estimate impacts).10 The 
last two rows of Table 5 show that exact matching and OLS, like propensity-score matching, 
produce impact estimates that are very close to experimental impact estimates. 

 

Table 5. Experimental and Nonexperimental Impact Estimates in 12 CMO Schools 

 Reading Math 

    Impact   SE      Impact    SE 

Experimental ITT 0.00 0.04        0.09** 0.04 

Propensity Score ITT Based 0.03 0.06 0.08 0.07 

Exact Matching ITT Based  0.02 0.06 0.08 0.07 

OLS ITT Based 0.02 0.06 0.07 0.07 

**Indicates statistically distinguishable from zero with 95 percent confidence. 

Moreover, nonexperimental impact estimates at the site level are very similar to experimental 
site estimates, as the high correlations in Table 6 indicate. At the site level, PSM ITT impact 
estimates correlate with experimental ITT impact estimates at 0.97 in math and 0.90 in reading. Site-
level results are also similar to experimental impacts for exact matching (0.96 for math and 0.90 for 
reading) and OLS (0.99 for math and 0.88 for reading). For each nonexperimental method, the 
impact estimates do not consistently under- or overestimate experimental ITT impacts (i.e., there is 
no evidence that they are positively or negatively biased). 

 

Table 6. Experimental and Nonexperimental Impact Estimates at the Site Level 

 
Reading  Math 

Lottery Site EXP PSM EM OLS  EXP PSM EM OLS 

A 0.05 0.12 0.08 0.10  0.31 0.36 0.38 0.34 

B 0.14 0.17 0.16 0.13  n/a n/a n/a n/a 

C -0.15 -0.21 -0.25 -0.18  -0.11 -0.08 -0.11 -0.13 

D -0.10 -0.04 -0.01 -0.03  0.05 0.03 0.06 0.03 

E 0.11 0.11 0.11 0.08  0.19 0.14 0.11 0.14 

F -0.06 -0.11 -0.08 -0.09  -0.03 -0.08 -0.07 -0.06 

G -0.10 -0.01 -0.04 0.00  n/a n/a n/a n/a 

Correlation with EXP n/a 0.90 0.90 0.88  n/a 0.97 0.96 0.99 

n/a means not applicable 

                                                 
10 When calculating the NXP standard errors, we make two assumptions, each of which has an opposite effect on 

the size of the standard errors. First, we assume zero covariance between the sampling errors of the treatment and 
control enrollees’ impact estimates. Because the comparison students who are being matched to the two groups 
overlap—especially in the OLS analysis that incorporates all students in the same grade in the district—the covariance is 
actually positive. This results in the over-estimation of the SEs and p-values. Second, we assume no covariance between 
the sampling errors of site-specific impact estimates. Several sites occur within the same district, and thus comparison 
students overlap between sites, especially in the OLS analysis, creating a positive covariance between the sampling errors 
of the site impact estimates. This results in the under-estimation of the SEs and p-values.  
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Conclusion 

In this paper we develop a new approach to examine whether nonexperimental methods can 
replicate the most causally valid ITT experimental estimates when there is substantial control 
crossover. Our findings suggest that nonexperimental panel approaches (propensity-score matching, 
exact matching, and OLS regression) that follow subjects over time and incorporate pre-treatment 
measures of the outcome can produce impact estimates that replicate ITT experimental estimates 
with a high degree of accuracy. Moreover, the nonexperimental estimates are neither higher nor 
lower than the experimental estimates, implying no systematic bias. Experimental ITT impacts 
remain the gold standard due to their transparent, minimal assumptions, but the repeated validations 
of nonexperimental methods indicate that well-conducted nonexperimental studies with baseline 
measures of the outcome of interest can often achieve sufficient internal validity.  

The finding that nonexperimental methods using pre-treatment measures of the outcome can 
successfully replicate experimental results is not novel. But this is the first study to demonstrate that 
replication of rigorous ITT experimental impact estimates is possible using nonexperimental 
approaches even in the context of substantial control-group crossover, a common feature of many field 
experiments.  

The extent to which nonexperimental studies might produce unbiased estimates of impacts on 
outcomes for which baseline measures are unavailable remains an open question (e.g., Glazerman et 
al. 2003). Additional research on this issue is merited, because some outcomes of interest are not 
measured repeatedly and therefore cannot be included as baseline control variables. In the context 
of schooling, these include attainment outcomes such as high-school graduation and enrollment in 
college. Whether baseline test scores can adequately control for selection related to student 
attainment is as yet unknown—a question to be addressed in future studies that have admissions 
lottery data and a long post-lottery time series. 

With the growth of detailed administrative data on program participants, validation of 
nonexperimental methods will continue to be important for the development of knowledge of the 
impacts in the field of complex policies and interventions. In education and many other policy 
arenas, randomized experiments are unlikely to be able to address many critical policy questions. In 
some instances, exclusive reliance on randomized experimental results could lead to mistaken 
conclusions. For example, charter schools that are sufficiently oversubscribed to use admissions 
lotteries could be an unusually effective group of charter schools (as suggested in Abdulkadiroglu et 
al. 2013). Small-scale experiments may fail to capture systemic effects that become evident only at 
scale, as, for example, when the state of California used the results of a class-size reduction 
experiment to motivate a statewide class-size reduction policy, failing to anticipate unintended 
teacher labor-supply effects that occurred only as a result of large-scale implementation (see Stecher 
and Bohrnstedt 2001). This paper should help future studies to validate nonexperimental methods 
that will be important in policy research, in various contexts.  
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